Abstract
The understanding and development of functioning systems are crucial steps for microbial fuel cell (MFC) technology advancement. In this study, a compact spiral wound MFC (swMFC) was developed and hydraulic residence time distribution (RTD) tests were conducted to investigate the flow characteristics in the systems. Results show that two-chamber swMFCs have high surface area to volume ratios of 350-700m2/m3, and by using oxygen cathode without metal-catalysts, the maximum power densities were 42W/m3 based on total volume and 170W/m3 based on effective volume. The hydraulic step-input tracer study identified 20-67% of anodic flow dead space, which presents new opportunities for system improvement. Electrochemical tools revealed very low ohmic resistance but high charge transfer and diffusion resistance due to catalyst-free oxygen reduction. The spiral wound configuration combined with RTD tool offers a holistic approach for MFC development and optimization.
Original language | English (US) |
---|---|
Pages (from-to) | 287-293 |
Number of pages | 7 |
Journal | Bioresource Technology |
Volume | 174 |
DOIs | |
State | Published - Dec 1 2014 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Waste Management and Disposal
- Environmental Engineering
- Renewable Energy, Sustainability and the Environment
Keywords
- Dead space
- Hydraulic residence time distribution
- Microbial fuel cell
- Spiral wound