High-dimensional coexistence of temperate tree species: Functional traits, demographic rates, life-history stages, and their physical context

Sean M. McMahon, Charlotte J.E. Metcalf, Christopher W. Woodall

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Theoretical models indicate that trade-offs between growth and survival strategies of tree species can lead to coexistence across life history stages (ontogeny) and physical conditions experienced by individuals. There exist predicted physiological mechanisms regulating these trade-offs, such as an investment in leaf characters that may increase survival in stressful environments at the expense of investment in bole or root growth. Confirming these mechanisms, however, requires that potential environmental, ontogenetic, and trait influences are analyzed together. Here, we infer growth and mortality of tree species given size, site, and light characteristics from forest inventory data from Wisconsin to test hypotheses about growthsurvival trade-offs given species functional trait values under different ontogenetic and environmental states. A series of regression analyses including traits and rates their interactions with environmental and ontogenetic stages supported the relationships between traits and vital rates expected from the expectations from tree physiology. A combined model including interactions between all variables indicated that relationships between demographic rates and functional traits supports growth-survival trade-offs and their differences across species in high-dimensional niche space. The combined model explained 65% of the variation in tree growth and supports a concept of community coexistence similar to Hutchinson's n-dimensional hypervolume and not a low-dimensional niche model or neutral model.

Original languageEnglish (US)
Article numbere16253
JournalPloS one
Volume6
Issue number1
DOIs
StatePublished - 2011
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'High-dimensional coexistence of temperate tree species: Functional traits, demographic rates, life-history stages, and their physical context'. Together they form a unique fingerprint.

Cite this