High-density carbon ablator experiments on the National Ignition Facility

A. J. Mackinnon, N. B. Meezan, J. S. Ross, S. Le Pape, L. Berzak Hopkins, L. Divol, D. Ho, J. Milovich, A. Pak, J. Ralph, T. Döppner, P. K. Patel, C. Thomas, R. Tommasini, S. Haan, A. G. Macphee, J. McNaney, J. Caggiano, R. Hatarik, R. BiontaT. Ma, B. Spears, J. R. Rygg, L. R. Benedetti, R. P.J. Town, D. K. Bradley, E. L. Dewald, D. Fittinghoff, O. S. Jones, H. R. Robey, J. D. Moody, S. Khan, D. A. Callahan, A. Hamza, J. Biener, P. M. Celliers, D. G. Braun, D. J. Erskine, S. T. Prisbrey, R. J. Wallace, B. Kozioziemski, R. Dylla-Spears, J. Sater, G. Collins, E. Storm, W. Hsing, O. Landen, J. L. Atherton, J. D. Lindl, M. J. Edwards, J. A. Frenje, M. Gatu-Johnson, C. K. Li, R. Petrasso, H. Rinderknecht, M. Rosenberg, F. H. Séguin, A. Zylstra, J. P. Knauer, G. Grim, N. Guler, F. Merrill, R. Olson, G. A. Kyrala, J. D. Kilkenny, A. Nikroo, K. Moreno, D. E. Hoover, C. Wild, E. Werner

Research output: Contribution to journalArticlepeer-review

138 Scopus citations

Abstract

High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

Original languageEnglish (US)
Article number056318
JournalPhysics of Plasmas
Volume21
Issue number5
DOIs
StatePublished - May 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'High-density carbon ablator experiments on the National Ignition Facility'. Together they form a unique fingerprint.

Cite this