TY - JOUR
T1 - Hierarchical transitions and fractal wrinkling drive bacterial pellicle morphogenesis
AU - Qin, Boyang
AU - Fei, Chenyi
AU - Wang, Bruce
AU - Stone, Howard A.
AU - Wingreen, Ned S.
AU - Bassler, Bonnie L.
N1 - Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.
PY - 2021/5/18
Y1 - 2021/5/18
N2 - Bacterial cells can self-organize into structured communities at fluid–fluid interfaces. These soft, living materials composed of cells and extracellular matrix are called pellicles. Cells residing in pellicles garner group-level survival advantages such as increased antibiotic resistance. The dynamics of pellicle formation and, more generally, how complex morphologies arise from active biomaterials confined at interfaces are not well understood. Here, using Vibrio cholerae as our model organism, a custom-built adaptive stereo microscope, fluorescence imaging, mechanical theory, and simulations, we report a fractal wrinkling morphogenesis program that differs radically from the well-known coalescence of wrinkles into folds that occurs in passive thin films at fluid–fluid interfaces. Four stages occur: growth of founding colonies, onset of primary wrinkles, development of secondary curved ridge instabilities, and finally the emergence of a cascade of finer structures with fractal-like scaling in wavelength. The time evolution of pellicle formation depends on the initial heterogeneity of the film microstructure. Changing the starting bacterial seeding density produces three variations in the sequence of morphogenic stages, which we term the bypass, crystalline, and incomplete modes. Despite these global architectural transitions, individual microcolonies remain spatially segregated, and thus, the community maintains spatial and genetic heterogeneity. Our results suggest that the memory of the original microstructure is critical in setting the morphogenic dynamics of a pellicle as an active biomaterial.
AB - Bacterial cells can self-organize into structured communities at fluid–fluid interfaces. These soft, living materials composed of cells and extracellular matrix are called pellicles. Cells residing in pellicles garner group-level survival advantages such as increased antibiotic resistance. The dynamics of pellicle formation and, more generally, how complex morphologies arise from active biomaterials confined at interfaces are not well understood. Here, using Vibrio cholerae as our model organism, a custom-built adaptive stereo microscope, fluorescence imaging, mechanical theory, and simulations, we report a fractal wrinkling morphogenesis program that differs radically from the well-known coalescence of wrinkles into folds that occurs in passive thin films at fluid–fluid interfaces. Four stages occur: growth of founding colonies, onset of primary wrinkles, development of secondary curved ridge instabilities, and finally the emergence of a cascade of finer structures with fractal-like scaling in wavelength. The time evolution of pellicle formation depends on the initial heterogeneity of the film microstructure. Changing the starting bacterial seeding density produces three variations in the sequence of morphogenic stages, which we term the bypass, crystalline, and incomplete modes. Despite these global architectural transitions, individual microcolonies remain spatially segregated, and thus, the community maintains spatial and genetic heterogeneity. Our results suggest that the memory of the original microstructure is critical in setting the morphogenic dynamics of a pellicle as an active biomaterial.
UR - http://www.scopus.com/inward/record.url?scp=85105769973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105769973&partnerID=8YFLogxK
U2 - 10.1073/pnas.2023504118
DO - 10.1073/pnas.2023504118
M3 - Article
C2 - 33972433
AN - SCOPUS:85105769973
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 20
M1 - e2023504118
ER -