TY - GEN
T1 - Hierarchical compound poisson factorization
AU - Basbug, Mehmet E.
AU - Engelhardt, Barbara E.
N1 - Publisher Copyright:
© 2016 by the author(s).
PY - 2016
Y1 - 2016
N2 - Non-negative matrix factorization models based on a hierarchical Gamma-Poisson structure capture user and item behavior effectively in extremely sparse data sets, making them the ideal choice for collaborative filtering applications. Hierarchical Poisson factorization (HPF) in particular has proved successful for scalable recommendation systems with extreme sparsity. HPF, however, suffers from a tight coupling of sparsity model (absence of a rating) and response model (the value of the rating), which limits the expressiveness of the latter. Here, we introduce hierarchical compound Poisson factorization (HCPF) that has the favorable Gamma- Poisson structure and scalability of HPF to high-dimensional extremely sparse matrices. More importantly, HCPF decouples the sparsity model from the response model, allowing us to choose the most suitable distribution for the response. HCPF can capture binary, non-negative discrete, non-negative continuous, and zero-inflated continuous responses. We compare HCPF with HPF on nine discrete and three continuous data sets and conclude that HCPF captures the relationship between sparsity and response better than HPF.
AB - Non-negative matrix factorization models based on a hierarchical Gamma-Poisson structure capture user and item behavior effectively in extremely sparse data sets, making them the ideal choice for collaborative filtering applications. Hierarchical Poisson factorization (HPF) in particular has proved successful for scalable recommendation systems with extreme sparsity. HPF, however, suffers from a tight coupling of sparsity model (absence of a rating) and response model (the value of the rating), which limits the expressiveness of the latter. Here, we introduce hierarchical compound Poisson factorization (HCPF) that has the favorable Gamma- Poisson structure and scalability of HPF to high-dimensional extremely sparse matrices. More importantly, HCPF decouples the sparsity model from the response model, allowing us to choose the most suitable distribution for the response. HCPF can capture binary, non-negative discrete, non-negative continuous, and zero-inflated continuous responses. We compare HCPF with HPF on nine discrete and three continuous data sets and conclude that HCPF captures the relationship between sparsity and response better than HPF.
UR - http://www.scopus.com/inward/record.url?scp=84999054870&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84999054870&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84999054870
T3 - 33rd International Conference on Machine Learning, ICML 2016
SP - 2665
EP - 2674
BT - 33rd International Conference on Machine Learning, ICML 2016
A2 - Weinberger, Kilian Q.
A2 - Balcan, Maria Florina
PB - International Machine Learning Society (IMLS)
T2 - 33rd International Conference on Machine Learning, ICML 2016
Y2 - 19 June 2016 through 24 June 2016
ER -