TY - JOUR
T1 - Heterogeneous electron transfer at designed semiconductor/liquid interfaces. Rate of reduction of surface-confined ferricenium centers by solution reagents
AU - Lewis, Nathan S.
AU - Bocarsly, Andrew B.
AU - Wrighton, Mark S.
PY - 1980
Y1 - 1980
N2 - Reduction of surface-confined ferricenium by solution reductants iodide, diindenyliron, (η5-C5H5)4Fe 4(CO)4, 1,1′-dimethylferrocene, ferrocene, and phenylferrocene has been studied in EtOH-0.1 M [n-Bu4N]ClO4 and also in H2O-NaClO4 for iodide. The surface-confined ferricenium can be generated on n-type Si by illumination of the electrode at some potential more positive than ∼-0.2 V vs. SCE. Owing to the two stimuli (light and potential) response of the derivatized photoelectrode it is possible to directly measure (by linear sweep voltammetry) the time dependence of the surface ferricenium concentration in the dark and in the presence of the various reducing agents mentioned above. At a given concentration of iodide in solution we find the rate of reduction of surface ferricenium to be directly proportional to the surface ferricenium concentration. By measuring rate of ferricenium reduction at various iodide concentrations, the rate law is thus determined to be rate = ket[Fe(Cp)2+][I-] where [Fe(Cp)2+] is the surface ferricenium concentration in mol/cm2 and [I-] is the solution concentration of iodide in mol/cm3. We find ket to be (3 ± 1) ∼ 104 cm3/(mol s) in EtOH solvent and only (1 ± 0.5) × 103 cm3/(mol s) in H2O. The value in EtOH is somewhat lower than would be estimated from homogeneous solution reaction of ferricenium with iodide under the same conditions. All other reductants mentioned above reduce the surface ferricenium in EtOH solvent with a value of ket > 6 × 107 cm3/(mol s); that is, the reduction rate is mass transport, not charge transfer, limited under the conditions employed including well-stirred solutions with stationary electrodes or rotated (up to 2000 rpm) disk electrodes. However, the relative ordering of the "fast" reductants has been determined to be diindenyliron > (η5-C5H5)4Fe 4(CO)4 ∼ 1,1′-dimethylferrocene > ferrocene ∼ phenylferrocene. A large value of ket is expected based on the fast self-exchange rates of ferrocene and its derivatives. Acetylferrocene is not expected to be able to reduce ferricenium on thermodynamic grounds, and we find that surface ferricenium is inert in its presence. Most of the derivatized surfaces have been prepared from (1,1′-ferrocenediyl)dichlorosilane, but preliminary results with polyvinylferrocene modified and (1,1′-ferrocenediyl)dimethylsilane derivatized surfaces are similar. Very high coverage surfaces from (1,1′-ferrocenediyl)dichlorosilane show some evidence for selective reduction of the more accessible ferricenium centers when a "fast" reductant is used. Steady-state photoanodic current at a given concentration of reductant generally accords well with the measured ket values, and for the iodide experiments the steady-state photocurrent is directly proportional to surface coverage of electroactive ferrocene. Such studies are relevant to use of derivatized photoelectrodes in energy conversion applications.
AB - Reduction of surface-confined ferricenium by solution reductants iodide, diindenyliron, (η5-C5H5)4Fe 4(CO)4, 1,1′-dimethylferrocene, ferrocene, and phenylferrocene has been studied in EtOH-0.1 M [n-Bu4N]ClO4 and also in H2O-NaClO4 for iodide. The surface-confined ferricenium can be generated on n-type Si by illumination of the electrode at some potential more positive than ∼-0.2 V vs. SCE. Owing to the two stimuli (light and potential) response of the derivatized photoelectrode it is possible to directly measure (by linear sweep voltammetry) the time dependence of the surface ferricenium concentration in the dark and in the presence of the various reducing agents mentioned above. At a given concentration of iodide in solution we find the rate of reduction of surface ferricenium to be directly proportional to the surface ferricenium concentration. By measuring rate of ferricenium reduction at various iodide concentrations, the rate law is thus determined to be rate = ket[Fe(Cp)2+][I-] where [Fe(Cp)2+] is the surface ferricenium concentration in mol/cm2 and [I-] is the solution concentration of iodide in mol/cm3. We find ket to be (3 ± 1) ∼ 104 cm3/(mol s) in EtOH solvent and only (1 ± 0.5) × 103 cm3/(mol s) in H2O. The value in EtOH is somewhat lower than would be estimated from homogeneous solution reaction of ferricenium with iodide under the same conditions. All other reductants mentioned above reduce the surface ferricenium in EtOH solvent with a value of ket > 6 × 107 cm3/(mol s); that is, the reduction rate is mass transport, not charge transfer, limited under the conditions employed including well-stirred solutions with stationary electrodes or rotated (up to 2000 rpm) disk electrodes. However, the relative ordering of the "fast" reductants has been determined to be diindenyliron > (η5-C5H5)4Fe 4(CO)4 ∼ 1,1′-dimethylferrocene > ferrocene ∼ phenylferrocene. A large value of ket is expected based on the fast self-exchange rates of ferrocene and its derivatives. Acetylferrocene is not expected to be able to reduce ferricenium on thermodynamic grounds, and we find that surface ferricenium is inert in its presence. Most of the derivatized surfaces have been prepared from (1,1′-ferrocenediyl)dichlorosilane, but preliminary results with polyvinylferrocene modified and (1,1′-ferrocenediyl)dimethylsilane derivatized surfaces are similar. Very high coverage surfaces from (1,1′-ferrocenediyl)dichlorosilane show some evidence for selective reduction of the more accessible ferricenium centers when a "fast" reductant is used. Steady-state photoanodic current at a given concentration of reductant generally accords well with the measured ket values, and for the iodide experiments the steady-state photocurrent is directly proportional to surface coverage of electroactive ferrocene. Such studies are relevant to use of derivatized photoelectrodes in energy conversion applications.
UR - http://www.scopus.com/inward/record.url?scp=0141579872&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141579872&partnerID=8YFLogxK
U2 - 10.1021/j100453a008
DO - 10.1021/j100453a008
M3 - Article
AN - SCOPUS:0141579872
SN - 0022-3654
VL - 84
SP - 2033
EP - 2043
JO - Journal of physical chemistry
JF - Journal of physical chemistry
IS - 16
ER -