Hardware-in-the-Loop End-to-End Optimization of Camera Image Processing Pipelines

Ali Mosleh, Avinash Sharma, Emmanuel Onzon, Fahim Mannan, Nicolas Robidoux, Felix Heide

Research output: Contribution to journalConference articlepeer-review

Abstract

Commodity imaging systems rely on hardware image signal processing (ISP) pipelines. These low-level pipelines consist of a sequence of processing blocks that, depending on their hyperparameters, reconstruct a color image from RAW sensor measurements. Hardware ISP hyperparameters have a complex interaction with the output image, and therefore with the downstream application ingesting these images. Traditionally, ISPs are manually tuned in isolation by imaging experts without an end-to-end objective. Very recently, ISPs have been optimized with 1st-order methods that require differentiable approximations of the hardware ISP. Departing from such approximations, we present a hardware-in-the-loop method that directly optimizes hardware image processing pipelines for end-to-end domain-specific losses by solving a nonlinear multi-objective optimization problem with a novel 0th-order stochastic solver directly interfaced with the hardware ISP. We validate the proposed method with recent hardware ISPs and 2D object detection, segmentation, and human viewing as end-to-end downstream tasks. For automotive 2D object detection, the proposed method outperforms manual expert tuning by 30% mean average precision (mAP) and recent methods using ISP approximations by 18% mAP.

Original languageEnglish (US)
Article number9156332
Pages (from-to)7526-7535
Number of pages10
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
StatePublished - 2020
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States
Duration: Jun 14 2020Jun 19 2020

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Hardware-in-the-Loop End-to-End Optimization of Camera Image Processing Pipelines'. Together they form a unique fingerprint.

Cite this