Hardness-randomness tradeoffs for bounded depth arithmetic circuits

Zeev Dvir, Amir Shpilka, Amir Yehudayoff

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial f that cannot be computed by a depth d arithmetic circuit of small size, then there exists an e.cient deterministic black-box algorithm to test whether a given depth d-5 circuit that computes a polynomial of relatively small individual degrees is identically zero or not. In particular, if we are guaranteed that the tested circuit computes a multilinear polynomial, then we can perform the identity test e.ciently. To the best of our knowledge this is the .rst hardness-randomness tradeo. for bounded depth arithmetic circuits. The above results are obtained using the arithmetic Nisan - Wigderson generator of Kabanets and Impagliazzo together with a new theorem on bounded depth circuits, which is the main technical contribution of our work. This theorem deals with polynomial equations of the form P(x1, . . . ,xn, y) β 0 and shows that if P has a circuit of depth d and size s and if the polynomial f(x1, . . . , xn) satis.es P(x1, . . . , xn, f) β 0, then f has a circuit of depth d+3 and size poly(s,mr), where m is the total degree of f and r is the degree of y in P. This circuit for f can be found probabilistically in time poly(s,mr). In the other direction we observe that the methods of Kabanets and Impagliazzo can be used to show that derandomizing identity testing for bounded depth circuits implies lower bounds for the same class of circuits. More formally, if we can derandomize polynomial identity testing for bounded depth circuits, then NEXP does not have bounded depth arithmetic circuits. That is, either NEXP P/poly or the Permanent is not computable by polynomial size bounded depth arithmetic circuits.

Original languageEnglish (US)
Pages (from-to)1279-1293
Number of pages15
JournalSIAM Journal on Computing
Volume39
Issue number4
DOIs
StatePublished - 2009
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Computer Science
  • General Mathematics

Keywords

  • Derandomization
  • Hardness
  • Polynomial factoring
  • Polynomial identity testing
  • Randomness

Fingerprint

Dive into the research topics of 'Hardness-randomness tradeoffs for bounded depth arithmetic circuits'. Together they form a unique fingerprint.

Cite this