Hall thruster with absorbing electrodes

A. Fruchtman, N. J. Fisch, Y. Raitses

Research output: Contribution to conferencePaperpeer-review


Control of the electric field profile in the Hall thruster through the positioning of an additional electrode along the channel is theoretically shown to enhance the efficiency. The reduction of the potential drop near the anode increases the plasma density there, through the increase of the electron and ion transit times. As a result, the ionization is increased in the vicinity of the anode, thus enhancing the propellant and energy utilizations. This resulting separation of the ionization and acceleration regions is enhanced by forcing the sonic transition to occur at the additional electrode. The sonic transition is then abrupt and is accompanied by the presence of a large (theoretically infinite) electric field. The large electric field induced by the additional electrode allows us a further control of the electric field profile. In particular, when the electron temperature is high, a large abrupt voltage drop is induced at the vicinity of the additional electrode, a voltage drop that can comprise a significan part of the applied voltage. This ability to separately control the electric and the mgnetic field profiles is a great advantage, in addition to the efficiency enhancement demonstrated in the present paper.

Original languageEnglish (US)
StatePublished - 2000
Event35th Intersociety Energy Conversion Engineering Conference and Exhibit 2000 - Las Vegas, NV, United States
Duration: Jul 24 2000Jul 28 2000


Other35th Intersociety Energy Conversion Engineering Conference and Exhibit 2000
Country/TerritoryUnited States
CityLas Vegas, NV

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment


Dive into the research topics of 'Hall thruster with absorbing electrodes'. Together they form a unique fingerprint.

Cite this