Abstract
Highly crystalline thin films in organic semiconductors are important for applications in high-performance organic optoelectronics. Here, the effect of grain boundaries on the Hall effect and charge transport properties of organic transistors based on two exemplary benchmark systems is elucidated: (1) solution-processed blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) small molecule and indacenodithiophene-benzothiadiazole (C16IDT-BT) conjugated polymer, and (2) large-area vacuum evaporated polycrystalline thin films of rubrene (C42H28). It is discovered that, despite the high field-effect mobilities of up to 6 cm2 V−1 s−1 and the evidence of a delocalized band-like charge transport, the Hall effect in polycrystalline organic transistors is systematically and significantly underdeveloped, with the carrier coherence factor α < 1 (i.e., yields an underestimated Hall mobility and an overestimated carrier density). A model based on capacitively charged grain boundaries explaining this unusual behavior is described. This work significantly advances the understanding of magneto-transport properties of organic semiconductor thin films.
Original language | English (US) |
---|---|
Article number | 1903617 |
Journal | Advanced Functional Materials |
Volume | 30 |
Issue number | 20 |
DOIs | |
State | Published - May 1 2020 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Condensed Matter Physics
- General Materials Science
- Electrochemistry
- Biomaterials
Keywords
- charge transport
- hall effect
- mobility
- organic field-effect transistors (OFETs)
- organic semiconductors
- organic thin-film transistors (OTFTs)
- polycrystalline films