Abstract
The compressional component of magnetic perturbation δB∥ can play an important role in drift-Alfvenic instabilities in tokamaks, especially as the plasma β increases (β is the ratio of kinetic pressure to magnetic pressure). In this work, we have formulated a gyrokinetic particle simulation model incorporating δB∥, and verified the model in kinetic Alfven wave simulations using the Gyrokinetic Toroidal Code in slab geometry. Simulations of drift-Alfvenic instabilities in tokamak geometry shows that the kinetic ballooning mode (KBM) growth rate decreases more than 20% when δB∥ is neglected for βe=0.02, and that δB∥ has stabilizing effects on the ion temperature gradient instability, but negligible effects on the collisionless trapped electron mode. The KBM growth rate decreases about 15% when equilibrium current is neglected.
Original language | English (US) |
---|---|
Article number | 081205 |
Journal | Physics of Plasmas |
Volume | 24 |
Issue number | 8 |
DOIs | |
State | Published - Aug 1 2017 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics