Ground state of the spin-1/2 kagome-lattice Heisenberg antiferromagnet

Rajiv R.P. Singh, David A. Huse

Research output: Contribution to journalArticlepeer-review

236 Scopus citations

Abstract

Using series expansions around the dimer limit, we find that the ground state of the spin-1/2 Heisenberg antiferromagnet on the kagome lattice appears to be a valence bond crystal (VBC) with a 36 site unit cell, and ground-state energy per site E=-0.433±0.001 J. It consists of a honeycomb lattice of "perfect hexagons." The energy difference between the ground state and other ordered states with the maximum number of perfect hexagons, such as a stripe-ordered state, is of order 0.001 J. The expansion is also done for the 36 site system with periodic boundary conditions; its energy per site is 0.005±0.001 J lower than the infinite system, consistent with exact diagonalization results. Every unit cell of the VBC has two singlet states whose degeneracy is not lifted to sixth order in the expansion. We estimate this energy difference to be less than 0.001 J. The dimerization order parameter is found to be robust. Two leading orders of perturbation theory give lowest triplet excitations to be dispersionless and confined to the perfect hexagons.

Original languageEnglish (US)
Article number180407
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume76
Issue number18
DOIs
StatePublished - Nov 28 2007

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Ground state of the spin-1/2 kagome-lattice Heisenberg antiferromagnet'. Together they form a unique fingerprint.

Cite this