TY - GEN
T1 - Ground penetrating radar for material characterization in structural health monitoring applications
AU - Morris, Isabel
AU - Abdel-Jaber, Hiba
AU - Glisic, Branko
N1 - Funding Information:
The authors would like to acknowledge the support of NSF GRFP DGC #1148900; Princeton University’s Department of Geosciences provided both advice and equipment; Dorotea Sigurdardottir generously extended permission to use her figures of Streicker Bridge.
PY - 2017
Y1 - 2017
N2 - Unusual behavior in reinforced concrete structures, including those instrumented with embedded sensor networks, can often be detected by structural health monitoring (SHM) methods. This behavior can be caused by corrosion, cracking, delamination, or construction that differs from the design specifications. It is necessary to investigate unusual behavior to determine its cause. Nondestructive investigations are often applied to validate conclusions drawn from SHM methods, i.e. localization and description of features. Ground penetrating radar (GPR) has been used to investigate defects in structures, but has yet to be used to investigate the influence of material or mechanical properties of materials for the purposes of SHM. In this work, a post-tensioned concrete pedestrian bridge instrumented with fiber optic sensors was investigated (1) to quantify the differences between the concrete used in each of the two construction phases and (2) to locate and map continuous internal features of the bridge deck. A 2.6 GHz GPR antenna was used to survey the main span and two of four approaches of the bridge (one of which was constructed in the second construction phase). In addition to analyzing the data with standard processing and filtering techniques, additional attributes of the data were analyzed to quantify the difference between the concrete strength of each construction phase. The difference in mechanical properties of the concrete in each phase has been the subject of numerous SHM studies on the bridge and has been confirmed during this investigation. This discrepancy agrees with standard lab testing of concrete cores at 7 and 28 days, which is advantageous in associated SHM and analysis of the bridge. The results explore the relationship between electromagnetic and strength characteristics of the concrete, as well as the value of using GPR to complement SHM sensing approaches in understanding anomalies and as-built conditions of a structure.
AB - Unusual behavior in reinforced concrete structures, including those instrumented with embedded sensor networks, can often be detected by structural health monitoring (SHM) methods. This behavior can be caused by corrosion, cracking, delamination, or construction that differs from the design specifications. It is necessary to investigate unusual behavior to determine its cause. Nondestructive investigations are often applied to validate conclusions drawn from SHM methods, i.e. localization and description of features. Ground penetrating radar (GPR) has been used to investigate defects in structures, but has yet to be used to investigate the influence of material or mechanical properties of materials for the purposes of SHM. In this work, a post-tensioned concrete pedestrian bridge instrumented with fiber optic sensors was investigated (1) to quantify the differences between the concrete used in each of the two construction phases and (2) to locate and map continuous internal features of the bridge deck. A 2.6 GHz GPR antenna was used to survey the main span and two of four approaches of the bridge (one of which was constructed in the second construction phase). In addition to analyzing the data with standard processing and filtering techniques, additional attributes of the data were analyzed to quantify the difference between the concrete strength of each construction phase. The difference in mechanical properties of the concrete in each phase has been the subject of numerous SHM studies on the bridge and has been confirmed during this investigation. This discrepancy agrees with standard lab testing of concrete cores at 7 and 28 days, which is advantageous in associated SHM and analysis of the bridge. The results explore the relationship between electromagnetic and strength characteristics of the concrete, as well as the value of using GPR to complement SHM sensing approaches in understanding anomalies and as-built conditions of a structure.
UR - http://www.scopus.com/inward/record.url?scp=85032457904&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032457904&partnerID=8YFLogxK
U2 - 10.12783/shm2017/14045
DO - 10.12783/shm2017/14045
M3 - Conference contribution
AN - SCOPUS:85032457904
T3 - Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017
SP - 1669
EP - 1676
BT - Structural Health Monitoring 2017
A2 - Chang, Fu-Kuo
A2 - Kopsaftopoulos, Fotis
PB - DEStech Publications
T2 - 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017
Y2 - 12 September 2017 through 14 September 2017
ER -