Graphene oxide and H 2 production from bioelectrochemical graphite oxidation

Lu Lu, Cuiping Zeng, Luda Wang, Xiaobo Yin, Song Jin, Anhuai Lu, Zhiyong Ren

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H 2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO 2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H 2 and organic compounds are produced by microbial reduction of protons and CO 2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O 2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H 2 at low cost, and it may stimulate a new area of research in MES.

Original languageEnglish (US)
Article number16242
JournalScientific reports
Volume5
DOIs
StatePublished - Nov 17 2015

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Graphene oxide and H 2 production from bioelectrochemical graphite oxidation'. Together they form a unique fingerprint.

Cite this