Glycans pattern the phase behaviour of lipid membranes

Anand Bala Subramaniam, Guido Guidotti, Vinothan N. Manoharan, Howard A. Stone

Research output: Contribution to journalArticle

29 Scopus citations

Abstract

Hydrated networks of glycans (polysaccharides) - in the form of cell walls, periplasms or gel-like matrices - are ubiquitously present adjacent to cellular plasma membranes. Yet, despite their abundance, the function of glycans in the extracellular milieu is largely unknown. Here we show that the spatial configuration of glycans controls the phase behaviour of multiphase model lipid membranes: inhomogeneous glycan networks stabilize large lipid domains at the characteristic length scale of the network, whereas homogeneous networks suppress macroscopic lipid phase separation. We also find that glycan-patterned phase separation is thermally reversible - thus indicating that the effect is thermodynamic rather than kinetic - and that phase patterning probably results from a preferential interaction of glycans with ordered lipid phases. These findings have implications for membrane-mediated transport processes, potentially rationalize long-standing observations that differentiate the behaviour of native and model membranes and may indicate an intimate coupling between cellular lipidomes and glycomes.

Original languageEnglish (US)
Pages (from-to)128-133
Number of pages6
JournalNature Materials
Volume12
Issue number2
DOIs
StatePublished - Feb 2013

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Glycans pattern the phase behaviour of lipid membranes'. Together they form a unique fingerprint.

  • Cite this

    Subramaniam, A. B., Guidotti, G., Manoharan, V. N., & Stone, H. A. (2013). Glycans pattern the phase behaviour of lipid membranes. Nature Materials, 12(2), 128-133. https://doi.org/10.1038/nmat3492