Abstract
Despite the widespread success of Transformers across various domains, their optimization guarantees in large-scale model settings are not well-understood. This paper rigorously analyzes the convergence properties of gradient flow in training Transformers with weight decay regularization. First, we construct the mean-field limit of large-scale Transformers, showing that as the model width and depth go to infinity, gradient flow converges to the Wasserstein gradient flow, which is represented by a partial differential equation. Then, we demonstrate that the gradient flow reaches a global minimum consistent with the PDE solution when the weight decay regularization parameter is sufficiently small. Our analysis is based on a series of novel mean-field techniques that adapt to Transformers. Compared with existing tools for deep networks [47] that demand homogeneity and global Lipschitz smoothness, we utilize a refined analysis assuming only partial homogeneity and local Lipschitz smoothness. These new techniques are of independent interest.
| Original language | English (US) |
|---|---|
| Journal | Advances in Neural Information Processing Systems |
| Volume | 37 |
| State | Published - 2024 |
| Event | 38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada Duration: Dec 9 2024 → Dec 15 2024 |
All Science Journal Classification (ASJC) codes
- Signal Processing
- Information Systems
- Computer Networks and Communications