Abstract
We present multitechnique U-Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty-five Th-corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion-isotope dilution-thermal ionisation mass spectrometry (CA-ID-TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA-ID-TIMS date to within < 1.5%. Solution multi-collector ICP-MS (MC-ICP-MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s, n = 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA-ICP-MS laboratories are in agreement with the solution MC-ICP-MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U-Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.
Original language | English (US) |
---|---|
Pages (from-to) | 113-132 |
Number of pages | 20 |
Journal | Geostandards and Geoanalytical Research |
Volume | 43 |
Issue number | 1 |
DOIs | |
State | Published - Mar 2019 |
All Science Journal Classification (ASJC) codes
- Geology
- Geochemistry and Petrology
Keywords
- Hf isotope ratios
- ID-TIMS
- LA-ICP-MS
- MC-ICP-MS
- U-Pb geochronology
- reference material
- secondary ion mass spectrometry
- zircon