Abstract
Leverage score sampling is a powerful technique that originates from theoretical computer science, which can be used to speed up a large number of fundamental questions, e.g. linear regression, linear programming, semi-definite programming, cutting plane method, graph sparsification, maximum matching and max-flow. Recently, it has been shown that leverage score sampling helps to accelerate kernel methods [Avron, Kapralov, Musco, Musco, Velingker and Zandieh 17]. In this work, we generalize the results in [Avron, Kapralov, Musco, Musco, Velingker and Zandieh 17] to a broader class of kernels. We further bring the leverage score sampling into the field of deep learning theory. • We show the connection between the initialization for neural network training and approximating the neural tangent kernel with random features. • We prove the equivalence between regularized neural network and neural tangent kernel ridge regression under the initialization of both classical random Gaussian and leverage score sampling.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 2020-December |
State | Published - 2020 |
Event | 34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online Duration: Dec 6 2020 → Dec 12 2020 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing