Abstract
We prove the existence of a straight-field-line coordinate system we call generalized Boozer coordinates. This coordinate system exists for magnetic fields with nested toroidal flux surfaces provided (Formula presented), where symbols have their usual meaning, and the integral is taken along closed magnetic field lines. All quasisymmetric fields, regardless of their associated form of equilibria, must satisfy this condition. This coordinate system presents itself as a convenient form to describe general quasisymmetric configurations and their properties. Insight can be gained analytically into the difference between strong and weak forms of quasisymmetry, as well as axisymmetry, and the interaction of quasisymmetry with different forms of equilibria.
Original language | English (US) |
---|---|
Article number | 092510 |
Journal | Physics of Plasmas |
Volume | 28 |
Issue number | 9 |
DOIs | |
State | Published - Sep 1 2021 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics