Generalization error bounds for collaborative prediction with low-rank matrices

Nathan Srebro, Noga Alon, Tommi S. Jaakkola

Research output: Chapter in Book/Report/Conference proceedingConference contribution

48 Scopus citations

Abstract

We prove generalization error bounds for predicting entries in a partially observed matrix by fitting the observed entries with a low-rank matrix. In justifying the analysis approach we take to obtain the bounds, we present an example of a class of functions of finite pseudodimension such that the sums of functions from this class have unbounded pseudodimension.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 17 - Proceedings of the 2004 Conference, NIPS 2004
PublisherNeural information processing systems foundation
ISBN (Print)0262195348, 9780262195348
StatePublished - 2005
Externally publishedYes
Event18th Annual Conference on Neural Information Processing Systems, NIPS 2004 - Vancouver, BC, Canada
Duration: Dec 13 2004Dec 16 2004

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Other

Other18th Annual Conference on Neural Information Processing Systems, NIPS 2004
Country/TerritoryCanada
CityVancouver, BC
Period12/13/0412/16/04

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Generalization error bounds for collaborative prediction with low-rank matrices'. Together they form a unique fingerprint.

Cite this