Abstract
The quasi-bound modes localized on stable periodic ray orbits of dielectric micro-cavities are constructed in the short-wavelength limit using the parabolic equation method. These modes are shown to coexist with irregularly spaced "chaotic" modes for the generic case. The wavevector quantization rule for the quasi-bound modes is derived and given a simple physical interpretation in terms of Fresnel reflection; quasi-bound modes are explictly constructed and compared to numerical results. The effect of discrete symmetries of the resonator is analyzed and shown to give rise to quasi-degenerate multiplets; the average splitting of these multiplets is calculated by methods from quantum chaos theory.
Original language | English (US) |
---|---|
Pages (from-to) | 752-776 |
Number of pages | 25 |
Journal | Optics Express |
Volume | 10 |
Issue number | 16 |
DOIs | |
State | Published - Aug 2002 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics