Gated2Depth: Real-time dense lidar from gated images

Tobias Gruber, Frank Julca-Aguilar, Mario Bijelic, Felix Heide

Research output: Chapter in Book/Report/Conference proceedingConference contribution

36 Scopus citations

Abstract

We present an imaging framework which converts three images from a gated camera into high-resolution depth maps with depth accuracy comparable to pulsed lidar measurements. Existing scanning lidar systems achieve low spatial resolution at large ranges due to mechanically-limited angular sampling rates, restricting scene understanding tasks to close-range clusters with dense sampling. Moreover, today's pulsed lidar scanners suffer from high cost, power consumption, large form-factors, and they fail in the presence of strong backscatter. We depart from point scanning and demonstrate that it is possible to turn a low-cost CMOS gated imager into a dense depth camera with at least 80m range - by learning depth from three gated images. The proposed architecture exploits semantic context across gated slices, and is trained on a synthetic discriminator loss without the need of dense depth labels. The proposed replacement for scanning lidar systems is real-time, handles back-scatter and provides dense depth at long ranges. We validate our approach in simulation and on real-world data acquired over 4,000km driving in northern Europe. Data and code are available at https://github.com/gruberto/Gated2Depth.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1506-1516
Number of pages11
ISBN (Electronic)9781728148038
DOIs
StatePublished - Oct 2019
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: Oct 27 2019Nov 2 2019

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2019-October
ISSN (Print)1550-5499

Conference

Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period10/27/1911/2/19

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Gated2Depth: Real-time dense lidar from gated images'. Together they form a unique fingerprint.

Cite this