Gated Fields: Learning Scene Reconstruction from Gated Videos

Andrea Ramazzina, Stefanie Walz, Pragyan Dahal, Mario Bijelic, Felix Heide

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Reconstructing outdoor 3D scenes from temporal observations is a challenge that recent work on neural fields has offered a new avenue for. However, existing methods that recover scene properties, such as geometry, appearance, or radiance, solely from RGB captures often fail when handling poorly-lit or texture-deficient regions. Similarly, recovering scenes with scanning LiDAR sensors is also difficult due to their low angular sampling rate which makes recovering expansive real-world scenes difficult. Tackling these gaps, we introduce Gated Fields - a neural scene reconstruction method that utilizes active gated video sequences. To this end, we propose a neural rendering approach that seamlessly incorporates time-gated capture and illumination. Our method exploits the intrinsic depth cues in the gated videos, achieving precise and dense geometry reconstruction irrespective of ambient illumination conditions. We validate the method across day and night scenarios and find that Gated Fields compares favorably to RGB and LiDAR reconstruction methods. Our code and datasets are available here11https://light.princeton.edu/gatedfields/.

Original languageEnglish (US)
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PublisherIEEE Computer Society
Pages10530-10541
Number of pages12
ISBN (Electronic)9798350353006
DOIs
StatePublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: Jun 16 2024Jun 22 2024

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Country/TerritoryUnited States
CitySeattle
Period6/16/246/22/24

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • 3D Vision
  • Gated Camera
  • Neural Radiance Fields
  • Neural Rendering

Fingerprint

Dive into the research topics of 'Gated Fields: Learning Scene Reconstruction from Gated Videos'. Together they form a unique fingerprint.

Cite this