TY - JOUR
T1 - Galaxy Core Formation by Supermassive Black Hole Binaries
T2 - The Importance of Realistic Initial Conditions and Galaxy Morphology
AU - Dosopoulou, Fani
AU - Greene, Jenny E.
AU - Ma, Chung Pei
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.
PY - 2021/11/20
Y1 - 2021/11/20
N2 - The binding energy liberated by the coalescence of supermassive black hole (SMBH) binaries during galaxy mergers is thought to be responsible for the low density cores often found in bright elliptical galaxies. We use high-resolution N-body and Monte Carlo techniques to perform single and multistage galaxy merger simulations and systematically study the dependence of the central galaxy properties on the binary mass ratio, the slope of the initial density cusps, and the number of mergers experienced. We study both the amount of depleted stellar mass (or mass deficit), Mdef, and the radial extent of the depleted region, rb. We find that rb ≃ rSOI and that Mdef varies in the range of 0.5-4M•, with rSOI the influence radius of the remnant SMBH and M• its mass. The coefficients in these relations depend weakly on the binary mass ratio and remain remarkably constant through subsequent mergers. We conclude that the core size and mass deficit do not scale linearly with the number of mergers, making it hard to infer merger histories from observations. On the other hand, we show that both Mdef and rb are sensitive to the morphology of the galaxy merger remnant, and that adopting spherical initial conditions, as done in early work, leads to misleading results. Our models reproduce the range of values for Mdef found in most observational work, but span nearly an order-of magnitude range around the true ejected stellar mass.
AB - The binding energy liberated by the coalescence of supermassive black hole (SMBH) binaries during galaxy mergers is thought to be responsible for the low density cores often found in bright elliptical galaxies. We use high-resolution N-body and Monte Carlo techniques to perform single and multistage galaxy merger simulations and systematically study the dependence of the central galaxy properties on the binary mass ratio, the slope of the initial density cusps, and the number of mergers experienced. We study both the amount of depleted stellar mass (or mass deficit), Mdef, and the radial extent of the depleted region, rb. We find that rb ≃ rSOI and that Mdef varies in the range of 0.5-4M•, with rSOI the influence radius of the remnant SMBH and M• its mass. The coefficients in these relations depend weakly on the binary mass ratio and remain remarkably constant through subsequent mergers. We conclude that the core size and mass deficit do not scale linearly with the number of mergers, making it hard to infer merger histories from observations. On the other hand, we show that both Mdef and rb are sensitive to the morphology of the galaxy merger remnant, and that adopting spherical initial conditions, as done in early work, leads to misleading results. Our models reproduce the range of values for Mdef found in most observational work, but span nearly an order-of magnitude range around the true ejected stellar mass.
UR - http://www.scopus.com/inward/record.url?scp=85120399248&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120399248&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac1fe4
DO - 10.3847/1538-4357/ac1fe4
M3 - Article
AN - SCOPUS:85120399248
SN - 0004-637X
VL - 922
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 40
ER -