TY - JOUR
T1 - Future changes in Asian summer monsoon precipitation extremes as inferred from 20-km AGCM simulations
AU - Lui, Yuk Sing
AU - Tam, Chi Yung
AU - Lau, Ngar Cheung
N1 - Funding Information:
Acknowledgements The authors would like to thank Dr. Akio Kitoh for generous sharing the MRI-AGCM outputs from the KAKUSHIN Program, and Profs. C.P. Chang, Kyung-Ja Ha, June-Yi Lee and Song Yang for discussions. Comments from the anonymous reviewers help to strengthen this work. NCL at the Chinese University of Hong Kong is supported by the AXA Research Fund.
Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/2/15
Y1 - 2019/2/15
N2 - This study examines the impacts of climate change on precipitation extremes in the Asian monsoon region during boreal summer, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model. The model can capture the summertime monsoon rainfall, with characteristics similar to those from Tropical Rainfall Measuring Mission and Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation. By comparing the 2075–2099 with the present-day climate simulations, there is a robust increase of the mean rainfall in many locations due to a warmer climate. Over southeastern China, the Baiu rainband, Bay of Bengal and central India, extreme precipitation rates are also enhanced in the future, which can be inferred from increases of the 95th percentile of daily precipitation, the maximum accumulated precipitation in 5 consecutive days, the simple daily precipitation intensity index, and the scale parameter of the fitted gamma distribution. In these regions, with the exception of the Baiu rainband, most of these metrics give a fractional change of extreme rainfall per degree increase of the lower-tropospheric temperature of ~ 5 to 8.5% K−1, roughly consistent with the Clausius–Clapeyron relation. However, over the Baiu area extreme precipitation change scales as ~ 3.5% K−1 only. We have also stratified the rainfall data into those associated with tropical cyclones (TC) and those with other weather systems. The AGCM gives an increase of the accumulated TC rainfall over southeastern China, and a decrease in southern Japan in the future climate. The latter can be attributed to suppressed TC occurrence in southern Japan, whereas increased accumulated rainfall over southeastern China is due to more intense TC rain rate under global warming. Overall, non-TC weather systems are the main contributor to enhanced precipitation extremes in various locations. In the future, TC activities over southeastern China tend to further exacerbate the precipitation extremes, whereas those in the Baiu region lead to weaker changes of these extremes.
AB - This study examines the impacts of climate change on precipitation extremes in the Asian monsoon region during boreal summer, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model. The model can capture the summertime monsoon rainfall, with characteristics similar to those from Tropical Rainfall Measuring Mission and Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation. By comparing the 2075–2099 with the present-day climate simulations, there is a robust increase of the mean rainfall in many locations due to a warmer climate. Over southeastern China, the Baiu rainband, Bay of Bengal and central India, extreme precipitation rates are also enhanced in the future, which can be inferred from increases of the 95th percentile of daily precipitation, the maximum accumulated precipitation in 5 consecutive days, the simple daily precipitation intensity index, and the scale parameter of the fitted gamma distribution. In these regions, with the exception of the Baiu rainband, most of these metrics give a fractional change of extreme rainfall per degree increase of the lower-tropospheric temperature of ~ 5 to 8.5% K−1, roughly consistent with the Clausius–Clapeyron relation. However, over the Baiu area extreme precipitation change scales as ~ 3.5% K−1 only. We have also stratified the rainfall data into those associated with tropical cyclones (TC) and those with other weather systems. The AGCM gives an increase of the accumulated TC rainfall over southeastern China, and a decrease in southern Japan in the future climate. The latter can be attributed to suppressed TC occurrence in southern Japan, whereas increased accumulated rainfall over southeastern China is due to more intense TC rain rate under global warming. Overall, non-TC weather systems are the main contributor to enhanced precipitation extremes in various locations. In the future, TC activities over southeastern China tend to further exacerbate the precipitation extremes, whereas those in the Baiu region lead to weaker changes of these extremes.
UR - http://www.scopus.com/inward/record.url?scp=85045432126&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045432126&partnerID=8YFLogxK
U2 - 10.1007/s00382-018-4206-3
DO - 10.1007/s00382-018-4206-3
M3 - Article
AN - SCOPUS:85045432126
SN - 0930-7575
VL - 52
SP - 1443
EP - 1459
JO - Climate Dynamics
JF - Climate Dynamics
IS - 3-4
ER -