Abstract
In order to study the properties of the Hubbard model for narrow bands, a systematic treatment of the equations of motion of the Green's functions appropriate to that model has been developed. Higher-order Green's functions are reduced to functional derivatives of the basic Green's function G and calculated iteratively in a perturbation scheme which takes the Hubbard I solution G0 as the zeroth-order Green's function. A zeroth-order approximation to the self-energy correction obtained by inserting G0 into the functional derivatives is compared with various existing solutions. The perturbation scheme is further extended to an infinite order and the self-energy is calculated exactly up to terms linear in the hopping motion ε, a result which has not been obtained previously. The self-energy correction in this final result is drastically different from the zeroth-order solution, demonstrating the importance of the infinite-order iterative procedure. Finally, the electron correlations included in the final result are discussed in terms of diagrams.
Original language | English (US) |
---|---|
Pages (from-to) | 1817-1835 |
Number of pages | 19 |
Journal | Physical Review B |
Volume | 15 |
Issue number | 4 |
DOIs | |
State | Published - 1977 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics