Fully Bayesian inference for neural models with negative-binomial spiking

Jonathan W. Pillow, James G. Scott

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Scopus citations

Abstract

Characterizing the information carried by neural populations in the brain requires accurate statistical models of neural spike responses. The negative-binomial distribution provides a convenient model for over-dispersed spike counts, that is, responses with greater-than-Poisson variability. Here we describe a powerful data-augmentation framework for fully Bayesian inference in neural models with negative-binomial spiking. Our approach relies on a recently described latentvariable representation of the negative-binomial distribution, which equates it to a Polya-gamma mixture of normals. This framework provides a tractable, conditionally Gaussian representation of the posterior that can be used to design efficient EM and Gibbs sampling based algorithms for inference in regression and dynamic factor models. We apply the model to neural data from primate retina and show that it substantially outperforms Poisson regression on held-out data, and reveals latent structure underlying spike count correlations in simultaneously recorded spike trains.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages1898-1906
Number of pages9
StatePublished - Dec 1 2012
Externally publishedYes
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: Dec 3 2012Dec 6 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume3
ISSN (Print)1049-5258

Other

Other26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
CountryUnited States
CityLake Tahoe, NV
Period12/3/1212/6/12

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Fully Bayesian inference for neural models with negative-binomial spiking'. Together they form a unique fingerprint.

  • Cite this

    Pillow, J. W., & Scott, J. G. (2012). Fully Bayesian inference for neural models with negative-binomial spiking. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 (pp. 1898-1906). (Advances in Neural Information Processing Systems; Vol. 3).