TY - GEN
T1 - Fully Bayesian inference for neural models with negative-binomial spiking
AU - Pillow, Jonathan W.
AU - Scott, James G.
PY - 2012
Y1 - 2012
N2 - Characterizing the information carried by neural populations in the brain requires accurate statistical models of neural spike responses. The negative-binomial distribution provides a convenient model for over-dispersed spike counts, that is, responses with greater-than-Poisson variability. Here we describe a powerful data-augmentation framework for fully Bayesian inference in neural models with negative-binomial spiking. Our approach relies on a recently described latentvariable representation of the negative-binomial distribution, which equates it to a Polya-gamma mixture of normals. This framework provides a tractable, conditionally Gaussian representation of the posterior that can be used to design efficient EM and Gibbs sampling based algorithms for inference in regression and dynamic factor models. We apply the model to neural data from primate retina and show that it substantially outperforms Poisson regression on held-out data, and reveals latent structure underlying spike count correlations in simultaneously recorded spike trains.
AB - Characterizing the information carried by neural populations in the brain requires accurate statistical models of neural spike responses. The negative-binomial distribution provides a convenient model for over-dispersed spike counts, that is, responses with greater-than-Poisson variability. Here we describe a powerful data-augmentation framework for fully Bayesian inference in neural models with negative-binomial spiking. Our approach relies on a recently described latentvariable representation of the negative-binomial distribution, which equates it to a Polya-gamma mixture of normals. This framework provides a tractable, conditionally Gaussian representation of the posterior that can be used to design efficient EM and Gibbs sampling based algorithms for inference in regression and dynamic factor models. We apply the model to neural data from primate retina and show that it substantially outperforms Poisson regression on held-out data, and reveals latent structure underlying spike count correlations in simultaneously recorded spike trains.
UR - http://www.scopus.com/inward/record.url?scp=84877747743&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877747743&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84877747743
SN - 9781627480031
T3 - Advances in Neural Information Processing Systems
SP - 1898
EP - 1906
BT - Advances in Neural Information Processing Systems 25
T2 - 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Y2 - 3 December 2012 through 6 December 2012
ER -