Full momentum- and energy-resolved spectral function of a 2D electronic system

Joonho Jang, Heun Mo Yoo, L. N. Pfeiffer, K. W. West, K. W. Baldwin, Raymond C. Ashoori

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

The single-particle spectral function measures the density of electronic states in a material as a function of both momentum and energy, providing central insights into strongly correlated electron phenomena. Here we demonstrate a high-resolution method for measuring the full momentum- and energy-resolved electronic spectral function of a two-dimensional (2D) electronic system embedded in a semiconductor. The technique remains operational in the presence of large externally applied magnetic fields and functions even for electronic systems with zero electrical conductivity or with zero electron density. Using the technique on a prototypical 2D system, a GaAs quantum well, we uncover signatures of many-body effects involving electron-phonon interactions, plasmons, polarons, and a phonon analog of the vacuum Rabi splitting in atomic systems.

Original languageEnglish (US)
Pages (from-to)901-906
Number of pages6
JournalScience
Volume358
Issue number6365
DOIs
StatePublished - Nov 17 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Full momentum- and energy-resolved spectral function of a 2D electronic system'. Together they form a unique fingerprint.

Cite this