Full-f version of GENE for turbulence in open-field-line systems

Q. Pan, D. Told, E. L. Shi, G. W. Hammett, F. Jenko

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Unique properties of plasmas in the tokamak edge, such as large amplitude fluctuations and plasma-wall interactions in the open-field-line regions, require major modifications of existing gyrokinetic codes originally designed for simulating core turbulence. To this end, the global version of the 3D2V gyrokinetic code GENE, so far employing a δf-splitting technique, is extended to simulate electrostatic turbulence in straight open-field-line systems. The major extensions are the inclusion of the velocity-space nonlinearity, the development of a conducting-sheath boundary, and the implementation of the Lenard-Bernstein collision operator. With these developments, the code can be run as a full-f code and can handle particle loss to and reflection from the wall. The extended code is applied to modeling turbulence in the Large Plasma Device (LAPD), with a reduced mass ratio and a much lower collisionality. Similar to turbulence in a tokamak scrape-off layer, LAPD turbulence involves collisions, parallel streaming, cross-field turbulent transport with steep profiles, and particle loss at the parallel boundary.

Original languageEnglish (US)
Article number062303
JournalPhysics of Plasmas
Volume25
Issue number6
DOIs
StatePublished - Jun 1 2018

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Full-f version of GENE for turbulence in open-field-line systems'. Together they form a unique fingerprint.

Cite this