From SuperBIT to GigaBIT: Informing next-generation balloon-borne telescope design with Fine Guidance System flight data

Philippe Voyer, Steven J. Benton, Christopher J. Damaren, Spencer W. Everett, Aurelien A. Fraisse, Ajay S. Gill, John W. Hartley, David Harvey, Michael Henderson, Bradley Holder, Eric M. Huff, Mathilde Jauzac, William C. Jones, David Lagattuta, Jason S.Y. Leung, Lun Li, Thuy Vy T. Luu, Richard Massey, Jacqueline E. McCleary, Johanna M. NagyC. Barth Netterfield, Emaad Paracha, Susan F. Redmond, Jason D. Rhodes, Andrew Robertson, L. Javier Romualdez, Jürgen Schmoll, Mohamed M. Shaaban, Ellen L. Sirks, Georgios N. Vassilakis, André Z. Vitorelli

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Super-pressure Balloon-borne Imaging Telescope (SuperBIT) is a near-diffraction-limited 0.5 m telescope that launched via NASA's super-pressure balloon technology on April 16, 2023. SuperBIT achieved precise pointing control through the use of three nested frames in conjunction with an optical Fine Guidance System (FGS), resulting in an average image stability of 0.055” over 300-second exposures. The SuperBIT FGS includes a tip-tilt fast-steering mirror that corrects for jitter on a pair of focal plane star cameras. In this paper, we leverage the empirical data from SuperBIT's successful 45-night stratospheric mission to inform the FGS design for the next-generation balloon-borne telescope. The Gigapixel Balloon-borne Imaging Telescope (GigaBIT) is designed to be a 1.35m wide-field, high resolution imaging telescope, with specifications to extend the scale and capabilities beyond those of its predecessor SuperBIT. A description and analysis of the SuperBIT FGS will be presented along with methodologies for extrapolating this data to enhance GigaBIT's FGS design and fine pointing control algorithm. We employ a systems engineering approach to outline and formalize the design constraints and specifications for GigaBIT's FGS. GigaBIT, building on the SuperBIT legacy, is set to enhance high-resolution astronomical imaging, marking a significant advancement in the field of balloon-borne telescopes.

Original languageEnglish (US)
Title of host publicationGround-Based and Airborne Telescopes X
EditorsHeather K. Marshall, Jason Spyromilio, Tomonori Usuda
PublisherSPIE
ISBN (Electronic)9781510675117
DOIs
StatePublished - 2024
EventGround-Based and Airborne Telescopes X 2024 - Yokohama, Japan
Duration: Jun 16 2024Jun 21 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13094
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceGround-Based and Airborne Telescopes X 2024
Country/TerritoryJapan
CityYokohama
Period6/16/246/21/24

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Keywords

  • Balloon-borne telescope
  • integrated modeling
  • jitter management
  • pointing control
  • systems engineering

Fingerprint

Dive into the research topics of 'From SuperBIT to GigaBIT: Informing next-generation balloon-borne telescope design with Fine Guidance System flight data'. Together they form a unique fingerprint.

Cite this