Fracture behavior and properties of functionally graded fiber-reinforced concrete

Jeffery Roesler, Amanda Bordelon, Cristian Gaedicke, Kyoungsoo Park, Glaucio Paulino

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations


In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system.

Original languageEnglish (US)
Title of host publicationMultiscale and Functionally Graded Materials - Proceedings of the International Conference, FGM IX
Number of pages6
StatePublished - 2008
Externally publishedYes
Event9th International Conference on Multiscale and Functionally Graded Materials, FGM IX - Oahu Island, HI, United States
Duration: Oct 15 2006Oct 18 2006

Publication series

NameAIP Conference Proceedings
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616


Conference9th International Conference on Multiscale and Functionally Graded Materials, FGM IX
Country/TerritoryUnited States
CityOahu Island, HI

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy


  • Cohesive zone model
  • Concrete
  • Fibers
  • Fracture


Dive into the research topics of 'Fracture behavior and properties of functionally graded fiber-reinforced concrete'. Together they form a unique fingerprint.

Cite this