Abstract
In this paper, the density-matrix renormalization group method is employed to investigate the fractional quantum Hall effect at filling fractions ν=1/3 and 5/2. We first present benchmark results at both filling fractions for large system sizes to show the accuracy as well as the capability of the numerical algorithm. Furthermore, we show that by keeping a large number of basis states, one can also obtain an accurate entanglement spectrum at ν=5/2 for large systems with electron numbers up to Ne=34, much larger than systems previously studied. Based on a finite-size scaling analysis, we demonstrate that the entanglement gap defined by Li and Haldane is finite in the thermodynamic limit, which characterizes the topological order of the fractional quantum Hall effect state.
Original language | English (US) |
---|---|
Article number | 195135 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 83 |
Issue number | 19 |
DOIs | |
State | Published - May 31 2011 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics