Formulation of long-wavelength indocyanine green Nanocarriers

Vikram J. Pansare, William J. Faenza, Hoang Lu, Douglas H. Adamson, Robert K. Prud'homme

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICGtetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either Vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 11 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations.

Original languageEnglish (US)
Article number096007
JournalJournal of Biomedical Optics
Volume22
Issue number9
DOIs
StatePublished - Sep 1 2017

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • Biomaterials

Keywords

  • Biomedical imaging
  • Indocyanine green
  • Long-wavelength imaging
  • Nanocarriers
  • Nanoparticles
  • Stability

Fingerprint

Dive into the research topics of 'Formulation of long-wavelength indocyanine green Nanocarriers'. Together they form a unique fingerprint.

Cite this