@inproceedings{8525a318d61148b4a3373cf85a1540ea,
title = "Forecasting human dynamics from static images",
abstract = "This paper presents the first study on forecasting human dynamics from static images. The problem is to input a single RGB image and generate a sequence of upcoming human body poses in 3D. To address the problem, we propose the 3D Pose Forecasting Network (3D-PFNet). Our 3DPFNet integrates recent advances on single-image human pose estimation and sequence prediction, and converts the 2D predictions into 3D space. We train our 3D-PFNet using a three-step training strategy to leverage a diverse source of training data, including image and video based human pose datasets and 3D motion capture (MoCap) data. We demonstrate competitive performance of our 3D-PFNet on 2D pose forecasting and 3D pose recovery through quantitative and qualitative results.",
author = "Chao, {Yu Wei} and Jimei Yang and Brian Price and Scott Cohen and Jia Deng",
note = "Publisher Copyright: {\textcopyright} 2017 IEEE.; 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 ; Conference date: 21-07-2017 Through 26-07-2017",
year = "2017",
month = nov,
day = "6",
doi = "10.1109/CVPR.2017.388",
language = "English (US)",
series = "Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "3643--3651",
booktitle = "Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017",
address = "United States",
}