Forced imbibition in stratified porous media: Fluid dynamics and breakthrough saturation

Nancy B. Lu, Daniel B. Amchin, Sujit S. Datta

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Imbibition, the displacement of a nonwetting fluid by a wetting fluid, plays a central role in diverse energy, environmental, and industrial processes. While such flows are typically studied in homogeneous porous media with uniform permeabilities, in many cases, the media have multiple parallel strata of different permeabilities. How such stratification impacts the fluid dynamics of imbibition, as well as the fluid saturation after the wetting fluid breaks through to the end of a given medium, is poorly understood. We address this gap in knowledge by developing an analytical model of imbibition in a porous medium with two parallel strata, combined with a pore network model that explicitly describes fluid crossflow between the strata. By numerically solving these models, we examine the fluid dynamics and fluid saturation left after breakthrough. We find that the breakthrough saturation of nonwetting fluid is minimized when the imposed capillary number Ca is tuned to a value Ca∗ that depends on both the structure of the medium and the viscosity ratio between the two fluids. Our results thus provide quantitative guidelines for predicting and controlling flow in stratified porous media, with implications for water remediation, oil/gas recovery, and applications requiring moisture management in diverse materials.

Original languageEnglish (US)
Article number114007
JournalPhysical Review Fluids
Volume6
Issue number11
DOIs
StatePublished - Nov 2021

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Modeling and Simulation
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Forced imbibition in stratified porous media: Fluid dynamics and breakthrough saturation'. Together they form a unique fingerprint.

Cite this