Abstract
We characterise the pairs of graphs {X, Y} such that all {X, Y}-free graphs (distinct from C5) are perfect. Similarly, we characterise pairs {X, Y} such that all {X, Y}-free graphs (distinct from C5) are ω-colourable (that is, their chromatic number is equal to their clique number). More generally, we show characterizations of pairs {X, Y} for perfectness and ω-colourability of all connected {X, Y}-free graphs which are of independence at least 3, distinct from an odd cycle, and of order at least n0, and similar characterisations subject to each subset of these ad-ditional constraints. (The classes are non-hereditary and the characterisations for perfectness and ω-colourability are different.) We build on recent results of Brause et al. on {K1,3, Y}-free graphs, and we use Ramsey’s Theorem and the Strong Perfect Graph Theorem as main tools. We relate the present characterisations to known results on forbidden pairs for χ-boundedness and deciding k-colourability in polynomial time.
Original language | English (US) |
---|---|
Article number | #P2.21 |
Journal | Electronic Journal of Combinatorics |
Volume | 29 |
Issue number | 2 |
DOIs | |
State | Published - 2022 |
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Geometry and Topology
- Discrete Mathematics and Combinatorics
- Computational Theory and Mathematics
- Applied Mathematics