TY - JOUR
T1 - Fogarty International Center collaborative networks in infectious disease modeling
T2 - Lessons learnt in research and capacity building
AU - Nelson, Martha I.
AU - Lloyd-Smith, James O.
AU - Simonsen, Lone
AU - Rambaut, Andrew
AU - Holmes, Edward C.
AU - Chowell, Gerardo
AU - Miller, Mark A.
AU - Spiro, David J.
AU - Grenfell, Bryan
AU - Viboud, Cécile
N1 - Publisher Copyright:
© 2018
PY - 2019/3
Y1 - 2019/3
N2 - Due to a combination of ecological, political, and demographic factors, the emergence of novel pathogens has been increasingly observed in animals and humans in recent decades. Enhancing global capacity to study and interpret infectious disease surveillance data, and to develop data-driven computational models to guide policy, represents one of the most cost-effective, and yet overlooked, ways to prepare for the next pandemic. Epidemiological and behavioral data from recent pandemics and historic scourges have provided rich opportunities for validation of computational models, while new sequencing technologies and the ‘big data’ revolution present new tools for studying the epidemiology of outbreaks in real time. For the past two decades, the Division of International Epidemiology and Population Studies (DIEPS) of the NIH Fogarty International Center has spearheaded two synergistic programs to better understand and devise control strategies for global infectious disease threats. The Multinational Influenza Seasonal Mortality Study (MISMS) has strengthened global capacity to study the epidemiology and evolutionary dynamics of influenza viruses in 80 countries by organizing international research activities and training workshops. The Research and Policy in Infectious Disease Dynamics (RAPIDD) program and its precursor activities has established a network of global experts in infectious disease modeling operating at the research-policy interface, with collaborators in 78 countries. These activities have provided evidence-based recommendations for disease control, including during large-scale outbreaks of pandemic influenza, Ebola and Zika virus. Together, these programs have coordinated international collaborative networks to advance the study of emerging disease threats and the field of computational epidemic modeling. A global community of researchers and policy-makers have used the tools and trainings developed by these programs to interpret infectious disease patterns in their countries, understand modeling concepts, and inform control policies. Here we reflect on the scientific achievements and lessons learnt from these programs (h-index = 106 for RAPIDD and 79 for MISMS), including the identification of outstanding researchers and fellows; funding flexibility for timely research workshops and working groups (particularly relative to more traditional investigator-based grant programs); emphasis on group activities such as large-scale modeling reviews, model comparisons, forecasting challenges and special journal issues; strong quality control with a light touch on outputs; and prominence of training, data-sharing, and joint publications.
AB - Due to a combination of ecological, political, and demographic factors, the emergence of novel pathogens has been increasingly observed in animals and humans in recent decades. Enhancing global capacity to study and interpret infectious disease surveillance data, and to develop data-driven computational models to guide policy, represents one of the most cost-effective, and yet overlooked, ways to prepare for the next pandemic. Epidemiological and behavioral data from recent pandemics and historic scourges have provided rich opportunities for validation of computational models, while new sequencing technologies and the ‘big data’ revolution present new tools for studying the epidemiology of outbreaks in real time. For the past two decades, the Division of International Epidemiology and Population Studies (DIEPS) of the NIH Fogarty International Center has spearheaded two synergistic programs to better understand and devise control strategies for global infectious disease threats. The Multinational Influenza Seasonal Mortality Study (MISMS) has strengthened global capacity to study the epidemiology and evolutionary dynamics of influenza viruses in 80 countries by organizing international research activities and training workshops. The Research and Policy in Infectious Disease Dynamics (RAPIDD) program and its precursor activities has established a network of global experts in infectious disease modeling operating at the research-policy interface, with collaborators in 78 countries. These activities have provided evidence-based recommendations for disease control, including during large-scale outbreaks of pandemic influenza, Ebola and Zika virus. Together, these programs have coordinated international collaborative networks to advance the study of emerging disease threats and the field of computational epidemic modeling. A global community of researchers and policy-makers have used the tools and trainings developed by these programs to interpret infectious disease patterns in their countries, understand modeling concepts, and inform control policies. Here we reflect on the scientific achievements and lessons learnt from these programs (h-index = 106 for RAPIDD and 79 for MISMS), including the identification of outstanding researchers and fellows; funding flexibility for timely research workshops and working groups (particularly relative to more traditional investigator-based grant programs); emphasis on group activities such as large-scale modeling reviews, model comparisons, forecasting challenges and special journal issues; strong quality control with a light touch on outputs; and prominence of training, data-sharing, and joint publications.
KW - Capacity building
KW - Computational models
KW - Control
KW - Emerging disease threats
KW - Infectious diseases
KW - Influenza
KW - Pathogen evolution
KW - Policy
KW - Transmission models
UR - http://www.scopus.com/inward/record.url?scp=85056398910&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056398910&partnerID=8YFLogxK
U2 - 10.1016/j.epidem.2018.10.004
DO - 10.1016/j.epidem.2018.10.004
M3 - Review article
C2 - 30446431
AN - SCOPUS:85056398910
SN - 1755-4365
VL - 26
SP - 116
EP - 127
JO - Epidemics
JF - Epidemics
ER -