TY - GEN
T1 - Flow-level stability of data networks with non-convex and time-varying rate regions
AU - Liu, J.
AU - Proutière, A.
AU - Yi, Y.
AU - Chiang, Mung
AU - Poor, H. Vincent
N1 - Funding Information:
This work was supported by the Marsden Fund of the Royal Society of New Zealand.
PY - 2007
Y1 - 2007
N2 - In this paper we characterize flow-level stochastic stability for networks with non-convex or time-varying rate regions underresource allocation based on utility maximization. Similar to prior works on flow-level stability, we consider exogenous data arrivals with finite workloads. However, to model many realistic situations, the rate region, which constrains the feasibility of resource allocation, may be either non-convex or time-varying. When the rate region is fixed but non-convex, we derive sufficient and necessary conditions for stability, which coincide when the set of allocated rate vectors has continuous contours. When the rate region is time-varying according to some stationary, ergodic process, we derive the precise stability region. In both cases,the size of the stability region depends on the resource allocation policy, in particular, on the fairness parameter in -fair utility maximization. This is in sharp contrast with the substantial existing literature on stability under fixed and convex rate regions, in which the stability region coincides with the rate region for many utility-based resource allocation schemes, independently of the value of the fairness parameter. We further investigate the tradeoff between fairness and stability when rate region is non-convex or time-varying. Numerical examples of both wired and wireless networks are provided to illustrate the new stability regions and tradeoffs proved in the paper.
AB - In this paper we characterize flow-level stochastic stability for networks with non-convex or time-varying rate regions underresource allocation based on utility maximization. Similar to prior works on flow-level stability, we consider exogenous data arrivals with finite workloads. However, to model many realistic situations, the rate region, which constrains the feasibility of resource allocation, may be either non-convex or time-varying. When the rate region is fixed but non-convex, we derive sufficient and necessary conditions for stability, which coincide when the set of allocated rate vectors has continuous contours. When the rate region is time-varying according to some stationary, ergodic process, we derive the precise stability region. In both cases,the size of the stability region depends on the resource allocation policy, in particular, on the fairness parameter in -fair utility maximization. This is in sharp contrast with the substantial existing literature on stability under fixed and convex rate regions, in which the stability region coincides with the rate region for many utility-based resource allocation schemes, independently of the value of the fairness parameter. We further investigate the tradeoff between fairness and stability when rate region is non-convex or time-varying. Numerical examples of both wired and wireless networks are provided to illustrate the new stability regions and tradeoffs proved in the paper.
KW - Fairness
KW - Network utility maximization
KW - Resource allocation
KW - Stability
UR - http://www.scopus.com/inward/record.url?scp=36349021970&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36349021970&partnerID=8YFLogxK
U2 - 10.1145/1269899.1254910
DO - 10.1145/1269899.1254910
M3 - Conference contribution
AN - SCOPUS:36349021970
SN - 1595936394
SN - 9781595936394
T3 - Performance Evaluation Review
SP - 239
EP - 250
BT - SIGMETRICS'07 - Proceedings of the 2007 International Conference on Measurement and Modeling of Computer Systems
T2 - SIGMETRICS'07 - 2007 International Conference on Measurement and Modeling of Computer Systems
Y2 - 12 June 2007 through 16 June 2007
ER -