Flat bands, strange metals and the Kondo effect

Joseph G. Checkelsky, B. Andrei Bernevig, Piers Coleman, Qimiao Si, Silke Paschen

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Flat-band materials such as the kagome metals or moiré superlattices are of intense current interest. Flat bands can result from the electron motion on numerous (special) lattices and usually exhibit topological properties. Their reduced bandwidth proportionally enhances the effect of Coulomb interaction, even when the absolute magnitude of the latter is relatively small. Seemingly unrelated to these materials is the large family of strongly correlated electron systems, which include the heavy-fermion compounds, and cuprate and pnictide superconductors. In addition to itinerant electrons from large, strongly overlapping orbitals, they frequently contain electrons from more localized orbitals, which are subject to a large Coulomb interaction. The question then arises as to what commonality in the physical properties and microscopic physics, if any, exists between these two broad categories of materials. A rapidly increasing body of strikingly similar phenomena across the different platforms — from electronic localization–delocalization transitions to strange-metal behaviour and unconventional superconductivity — suggests that similar underlying principles could be at play. Indeed, it has recently been suggested that flat-band physics can be understood in terms of Kondo physics. Inversely, the concept of electronic topology from lattice symmetry, which is fundamental in flat-band systems, is enriching the field of strongly correlated electron systems, in which correlation-driven topological phases are increasingly being investigated. In this Perspective article, we elucidate this connection, survey the new opportunities for cross-fertilization across platforms and assess the prospect for new insights that may be gained into correlation physics and its intersection with electronic topology.

Original languageEnglish (US)
Pages (from-to)509-526
Number of pages18
JournalNature Reviews Materials
Volume9
Issue number7
DOIs
StatePublished - Jul 2024

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Energy (miscellaneous)
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Flat bands, strange metals and the Kondo effect'. Together they form a unique fingerprint.

Cite this