Abstract
The isolated effect of O2(a1Δg) on the propagation of C2H4 lifted flames was studied at reduced pressures (3.61kPa and 6.73kPa). The O2(a1Δg) was produced in a microwave discharge plasma and was isolated from O and O3 by NO addition to the plasma afterglow in a flow residence time on the order of 1s. The concentrations of O2(a1Δg) and O3 were measured quantitatively through absorption by sensitive off-axis integrated-cavity-output spectroscopy and one-pass line-of-sight absorption, respectively. Under these conditions, it was found that O2(a1Δg) enhanced the propagation speed of C2H4 lifted flames. Comparison with the results of enhancement by O3 found in part I of this investigation provided an estimation of 2-3% of flame speed enhancement for 5500ppm of O2(a1Δg) addition from the plasma. Numerical simulation results using the current kinetic model of O2(a1Δg) over-predicts the flame propagation enhancement found in the experiments. However, the inclusion of collisional quenching rate estimations of O2(a1Δg) by C2H4 mitigated the over-prediction. The present isolated experimental results of the enhancement of a hydrocarbon fueled flame by O2(a1Δg), along with kinetic modeling results suggest that further studies of CnHm+O2(a1Δg) collisional and reactive quenching are required in order to correctly predict combustion enhancement by O2(a1Δg). The present experimental results will have a direct impact on the development of elementary reaction rates with O2(a1Δg) at flame conditions to establish detailed plasma-flame kinetic mechanisms.
Original language | English (US) |
---|---|
Pages (from-to) | 1916-1928 |
Number of pages | 13 |
Journal | Combustion and Flame |
Volume | 157 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2010 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Chemical Engineering
- Fuel Technology
- Energy Engineering and Power Technology
- General Physics and Astronomy
Keywords
- Flame propagation enhancement
- Flame speed enhancement
- Lifted flame
- Plasma-assisted combustion
- Singlet delta oxygen
- Tribrachial flame