First principles study of H2S adsorption and dissociation on Fe(1 1 0)

D. E. Jiang, Emily A. Carter

Research output: Contribution to journalArticlepeer-review

79 Scopus citations


We report first principles density functional theory (DFT) results of H2S and HS adsorption and dissociation on the Fe(1 1 0) surface. We investigate the site preference of H2S, HS, and S on Fe(1 1 0). H2S is found to weakly adsorb on either the short bridge (SB) or long bridge (LB) site of Fe(1 1 0), with a binding energy of no more than 0.50 eV. The diffusion barrier from the LB site to the SB site is found to be small (∼0.10 eV). By contrast to H2S, HS is predicted to be strongly chemisorbed on Fe(1 1 0), with the S atom in the LB site and the HS bond oriented perpendicular to the surface. Isolated S atoms also are predicted to bind strongly to the LB sites of Fe(1 1 0), where the SB is found to be a transition state for S surface hopping between neighboring LB sites. The minimum energy paths for H2S and HS dehydrogenation involve rotating an H atom towards a nearby surface Fe atom, with the S-H bonds breaking on the top of one Fe atom. The barrier to break the first S-H bond in H2S is low at 0.10 eV, and breaking the second S-H bond is barrierless, suggesting deposition of S on Fe(1 1 0) via H2S is kinetically and thermodynamically facile.

Original languageEnglish (US)
Pages (from-to)60-68
Number of pages9
JournalSurface Science
Issue number1
StatePublished - May 20 2005

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry


  • Adsorption
  • Density functional calculations
  • Dissociation
  • Hydrogen sulfide
  • Iron


Dive into the research topics of 'First principles study of H2S adsorption and dissociation on Fe(1 1 0)'. Together they form a unique fingerprint.

Cite this