TY - JOUR
T1 - First-Principles Modeling of Transport Mechanisms in Carbonate-Hydroxide Electrolytes
AU - Mondal, Anirban
AU - Young, Jeffrey M.
AU - Kiss, Gabor
AU - Panagiotopoulos, Athanassios Z.
N1 - Funding Information:
We thank Lucas Koziol for insightful discussions and a critical reading of manuscript. Financial support for this work was provided by ExxonMobil Research and Engineering Co., under Agreement EM09125.A1, and by the Office of Basic Energy Sciences, U.S. Department of Energy, under Award DE-SC0002128. Computing resources were provided by Princeton Research Computing.
Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/3/4
Y1 - 2021/3/4
N2 - We performed ab initio molecular dynamics simulations of a molten [Li0.6K0.4]3CO3OH electrolyte containing dissolved CO2 and confirmed the presence of pyrocarbonate, bicarbonate, and water along with the constituent ions and molecular CO2. Our calculations indicate kinetics-driven formation of pyrocarbonate whereas bicarbonate and water are thermodynamically favored. Our results also demonstrate the presence of water at higher concentrations (double or more) than that of CO2, which reinforces the conclusions in our earlier work [AIChE J. 2020, e16988] based on chemical reaction equilibrium simulations. Structural analysis indicates a larger distortion in water geometry, due to its higher polarizability compared to the nonpolar CO2, explaining the higher reactivity and smaller average lifetime of H2O in the melt. The computed lifetime distributions of the reaction products reveal that the bicarbonate ion lives the shortest among all the species present in the system. It initiates a sequence of successive proton exchange events; such sequences of exchanges along a hydrogen-bonded network gives the Grotthuss mechanism for proton transport in liquid water. The estimated proton diffusion, based on a random walk model, is about 30 times faster than the hydroxide diffusion obtained from classical molecular dynamics simulations. We believe that the presence of proton transfer events in the system has a large impact on the overall ion dynamics and electrical conductivity of the medium.
AB - We performed ab initio molecular dynamics simulations of a molten [Li0.6K0.4]3CO3OH electrolyte containing dissolved CO2 and confirmed the presence of pyrocarbonate, bicarbonate, and water along with the constituent ions and molecular CO2. Our calculations indicate kinetics-driven formation of pyrocarbonate whereas bicarbonate and water are thermodynamically favored. Our results also demonstrate the presence of water at higher concentrations (double or more) than that of CO2, which reinforces the conclusions in our earlier work [AIChE J. 2020, e16988] based on chemical reaction equilibrium simulations. Structural analysis indicates a larger distortion in water geometry, due to its higher polarizability compared to the nonpolar CO2, explaining the higher reactivity and smaller average lifetime of H2O in the melt. The computed lifetime distributions of the reaction products reveal that the bicarbonate ion lives the shortest among all the species present in the system. It initiates a sequence of successive proton exchange events; such sequences of exchanges along a hydrogen-bonded network gives the Grotthuss mechanism for proton transport in liquid water. The estimated proton diffusion, based on a random walk model, is about 30 times faster than the hydroxide diffusion obtained from classical molecular dynamics simulations. We believe that the presence of proton transfer events in the system has a large impact on the overall ion dynamics and electrical conductivity of the medium.
UR - http://www.scopus.com/inward/record.url?scp=85101822550&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101822550&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.0c10879
DO - 10.1021/acs.jpcc.0c10879
M3 - Article
AN - SCOPUS:85101822550
SN - 1932-7447
VL - 125
SP - 4412
EP - 4422
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 8
ER -