TY - JOUR
T1 - First-principles exploration of alternative gate dielectrics
T2 - Electronic structure of ZrO2/Si and ZrSiO4/Si interfaces
AU - Puthenkovilakam, Ragesh
AU - Carter, Emily A.
AU - Chang, Jane P.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004/4
Y1 - 2004/4
N2 - We employed first principles simulations using density functional theory within the local density approximation to investigate the electronic properties of the ZrO2/Si and ZrSiO4/Si interfaces. We considered the interfaces between the (001) surfaces of tetragonal zirconia (t-ZrO 2) or zircon (ZrSiO4) and a silicon (100) substrate. We find that ZrO2/Si interfaces exhibit partial occupation of zirconium dangling bonds (Zr d states) at the Fermi level when the zirconium coordination is reduced from its bulk coordination. Hydrogen passivation of zirconium atoms, as well as oxygen bridging at the interface, can remove the partial occupancy of d orbitals at the Fermi level. The calculated band offsets of these interfaces show asymmetric band alignments, with conduction band offsets between 0.64 and 1.02 eV and valence band offsets between 3.51 and 3.89 eV, depending on the zirconium and oxygen coordination at various ZrO 2/Si interfaces. By contrast, the ZrSiO4/Si interface shows no partial occupation of zirconium dangling bonds at the Fermi level and provides a more symmetric band alignment, with a much higher conduction band offset of 2.10 eV and a valence band offset of 2.78 eV. These results suggest that ZrSiO4 may form an excellent interface with silicon in terms of its electronic properties and therefore may be a suitable candidate for replacing SiO2 as a gate insulator in silicon-based field effect transistors. On the other hand, we suggest that ZrO2 will require additional interface preparation or postdeposition annealing to yield adequate electronic properties for gate dielectric applications.
AB - We employed first principles simulations using density functional theory within the local density approximation to investigate the electronic properties of the ZrO2/Si and ZrSiO4/Si interfaces. We considered the interfaces between the (001) surfaces of tetragonal zirconia (t-ZrO 2) or zircon (ZrSiO4) and a silicon (100) substrate. We find that ZrO2/Si interfaces exhibit partial occupation of zirconium dangling bonds (Zr d states) at the Fermi level when the zirconium coordination is reduced from its bulk coordination. Hydrogen passivation of zirconium atoms, as well as oxygen bridging at the interface, can remove the partial occupancy of d orbitals at the Fermi level. The calculated band offsets of these interfaces show asymmetric band alignments, with conduction band offsets between 0.64 and 1.02 eV and valence band offsets between 3.51 and 3.89 eV, depending on the zirconium and oxygen coordination at various ZrO 2/Si interfaces. By contrast, the ZrSiO4/Si interface shows no partial occupation of zirconium dangling bonds at the Fermi level and provides a more symmetric band alignment, with a much higher conduction band offset of 2.10 eV and a valence band offset of 2.78 eV. These results suggest that ZrSiO4 may form an excellent interface with silicon in terms of its electronic properties and therefore may be a suitable candidate for replacing SiO2 as a gate insulator in silicon-based field effect transistors. On the other hand, we suggest that ZrO2 will require additional interface preparation or postdeposition annealing to yield adequate electronic properties for gate dielectric applications.
UR - http://www.scopus.com/inward/record.url?scp=42749100720&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=42749100720&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.69.155329
DO - 10.1103/PhysRevB.69.155329
M3 - Article
AN - SCOPUS:42749100720
SN - 0163-1829
VL - 69
SP - 155329-1-155329-11
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 15
M1 - 155329
ER -