Abstract
First-principles density functional theory calculations are performed to examine five postulated diffusion mechanisms for Ni in NiAl: next-nearest-neighbor (NNN) jumps, the triple defect mechanism, and three variants of the six-jump cycle. In contrast to most previous theoretical work, which employed empirical interatomic potentials, we provide a more accurate nonempirical description of the mechanisms. For each pathway, we calculate the activation energy and the pre-exponential factor for the diffusion constant. Although our quantum mechanics calculations are performed at 0 K, we show that it is critical to include the effect of temperature on the pre-exponential factor. We predict that the triple defect mechanism and [110] six-jump cycle both are likely contributors to Ni diffusion in NiAl since their activation energies and pre-exponential factors are in very good agreement with experimental data. Although the activation energy and pre-exponential factor of NNN jumps agree well with experiment, experimental evidence suggests that this is not a dominant contributor to Ni diffusion. Lastly, the activation energies of the [100] bent and straight six-jump cycles are 1 eV higher than the experimental value, allowing us to exclude both [100] cycle mechanisms.
Original language | English (US) |
---|---|
Article number | 184105 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 78 |
Issue number | 18 |
DOIs | |
State | Published - Nov 11 2008 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics