Finite-volume fractional-moment criteria for Anderson localization

Michael Aizenman, Jeffrey H. Schenker, Roland M. Friedrich, Dirk Hundertmark

Research output: Contribution to journalArticlepeer-review

116 Scopus citations

Abstract

A technically convenient signature of localization, exhibited by discrete operators with random potentials, is exponential decay of the fractional moments of the Green function within the appropriate energy ranges. Known implications include: spectral localization, absence of level repulsion, strong form of dynamical localization, and a related condition which plays a significant role in the quantization of the Hall conductance in two-dimensional Fermi gases. We present a family of finite-volume criteria which, under some mild restrictions on the distribution of the potential, cover the regime where the fractional moment decay condition holds. The constructive criteria permit to establish this condition at spectral band edges, provided there are sufficient "Lifshitz tail estimates" on the density of states. They are also used here to conclude that the fractional moment condition, and thus the other manifestations of localization, are valid throughout the regime covered by the "multiscale analysis". In the converse direction, the analysis rules out fast power-law decay of the Green functions at mobility edges.

Original languageEnglish (US)
Pages (from-to)219-253
Number of pages35
JournalCommunications In Mathematical Physics
Volume224
Issue number1
DOIs
StatePublished - 2001

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint Dive into the research topics of 'Finite-volume fractional-moment criteria for Anderson localization'. Together they form a unique fingerprint.

Cite this