Abstract
This work studies mode I crack growth in ceramic/metal functionally graded materials (FGMs) using three-dimensional interface-cohesive elements based upon a new phenomenological cohesive fracture model. The local separation energies and peak tractions for the metal and ceramic constituents govern the cohesive fracture process. The model formulation introduces two cohesive gradation parameters to control the transition of fracture behavior between the constituents. Numerical values of volume fractions for the constituents specified at nodes of the finite element model set the spatial gradation of material properties with standard isoparametric interpolations inside interface elements and background solid elements to define pointwise material property values. The paper describes applications of the cohesive fracture model and computational scheme to analyze crack growth in compact tension, C(T), and single-edge notch bend, SE(B), specimens with material properties characteristic of a TiB/Ti FGM. Young's modulus and Poisson's ratio of the background solid material are determined using a self-consistent method (the background material remains linear elastic). The numerical studies demonstrate that the load to cause crack extension in the FGM compares to that for the metal and that crack growth response varies strongly with values of the cohesive gradation parameter for the metal. These results suggest the potential to calibrate the value of this parameter by matching the predicted and measured crack growth response in standard fracture mechanics specimens.
Original language | English (US) |
---|---|
Pages (from-to) | 370-379 |
Number of pages | 10 |
Journal | Journal of Applied Mechanics, Transactions ASME |
Volume | 69 |
Issue number | 3 |
DOIs | |
State | Published - May 2002 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering