Finding Dataset Shortcuts with Grammar Induction

Dan Friedman, Alexander Wettig, Danqi Chen

Research output: Contribution to conferencePaperpeer-review

6 Scopus citations


Many NLP datasets have been found to contain shortcuts: simple decision rules that achieve surprisingly high accuracy. However, it is difficult to discover shortcuts automatically. Prior work on automatic shortcut detection has focused on enumerating features like unigrams or bigrams, which can find only low-level shortcuts, or relied on post-hoc model interpretability methods like saliency maps, which reveal qualitative patterns without a clear statistical interpretation. In this work, we propose to use probabilistic grammars to characterize and discover shortcuts in NLP datasets. Specifically, we use a context-free grammar to model patterns in sentence classification datasets and use a synchronous context-free grammar to model datasets involving sentence pairs. The resulting grammars reveal interesting shortcut features in a number of datasets, including both simple and high-level features, and automatically identify groups of test examples on which conventional classifiers fail. Finally, we show that the features we discover can be used to generate diagnostic contrast examples and incorporated into standard robust optimization methods to improve worst-group accuracy.

Original languageEnglish (US)
Number of pages19
StatePublished - 2022
Externally publishedYes
Event2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 - Abu Dhabi, United Arab Emirates
Duration: Dec 7 2022Dec 11 2022


Conference2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems


Dive into the research topics of 'Finding Dataset Shortcuts with Grammar Induction'. Together they form a unique fingerprint.

Cite this