Filtering spam with behavioral blacklisting

Anirudh Ramachandran, Nick Feamster, Santosh Vempala

Research output: Chapter in Book/Report/Conference proceedingConference contribution

172 Scopus citations

Abstract

Spam filters often use the reputation of an IP address (or IP address range) to classify email senders. This approach worked well when most spam originated from senders with fixed IP addresses, but spam today is also sent from IP addresses for which blacklist maintainers have outdated or inaccurate information (or no information at all). Spam campaigns also involve many senders, reducing the amount of spam any particular IP address sends to a single domain; this method allows spammers to stay "under the radar". The dynamism of any particular IP address begs for blacklisting techniques that automatically adapt as the senders of spam change. This paper presents SpamTracker, a spam filtering system that uses a new technique called behavioral blacklisting to classify email senders based on their sending behavior rather than their identity. Spammers cannot evade SpamTracker merely by using "fresh" IP addresses because blacklisting decisions are based on sending patterns, which tend to remain more invariant. SpamTracker uses fast clustering algorithms that react quickly to changes in sending patterns. We evaluate SpamTracker's ability to classify spammers using email logs for over 115 email domains; we find that SpamTracker can correctly classify many spammers missed by current filtering techniques. Although our current datasets prevent us from confirming SpamTracker's ability to completely distinguish spammers from legitimate senders, our evaluation shows that SpamTracker can identify a significant fraction of spammers that current IP-based blacklists miss. SpamTracker's ability to identify spammers before existing blacklists suggests that it can be used in conjunction with existing techniques (e.g., as an input to greylisting). SpamTracker is inherently distributed and can be easily replicated; incorporating it into existing email filtering infrastructures requires only small modifications to mail server configurations.

Original languageEnglish (US)
Title of host publicationCCS'07 - Proceedings of the 14th ACM Conference on Computer and Communications Security
Pages342-351
Number of pages10
DOIs
StatePublished - 2007
Event14th ACM Conference on Computer and Communications Security, CCS'07 - Alexandria, VA, United States
Duration: Oct 29 2007Nov 2 2007

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Other

Other14th ACM Conference on Computer and Communications Security, CCS'07
Country/TerritoryUnited States
CityAlexandria, VA
Period10/29/0711/2/07

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Networks and Communications

Keywords

  • Blacklist
  • Botnets
  • Clustering
  • Security
  • Spam

Fingerprint

Dive into the research topics of 'Filtering spam with behavioral blacklisting'. Together they form a unique fingerprint.

Cite this