Filament-Induced Failure in Lithium-Reservoir-Free Solid-State Batteries

Se Hwan Park, Abhinand Ayyaswamy, Jonathan Gjerde, W. Beck Andrews, Bairav S. Vishnugopi, Michael Drakopoulos, Nghia T. Vo, Zhong Zhong, Katsuyo Thornton, Partha P. Mukherjee, Kelsey B. Hatzell

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Lithium-reservoir-free solid-state batteries can fail due to electrical shorting as a result of fracture and lithium metal filament formation. Mechanical stress at the solid electrolyte surface can induce fractures, which promote lithium filament growth. This stress arises from both electrochemical sources, due to lithium electrodeposition, and mechanical sources, such as external stack pressure. Solid electrolyte surface roughness and the applied stack pressure together affect stress development. This study combines electrochemical experiments, 3D synchrotron imaging, and mesoscale modeling to explore how stack pressure influences failure mechanisms in lithium free solid-state batteries. At low stack pressure, irregular lithium plating and the resulting high local current density drive failure. At higher stack pressure, uniform lithium plating is favored; however, notch-like features in the surface of the solid electrolyte experience high tensile stress, leading to fractures that cause premature short-circuiting.

Original languageEnglish (US)
Pages (from-to)1174-1182
Number of pages9
JournalACS Energy Letters
Volume10
Issue number3
DOIs
StatePublished - Mar 14 2025
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemistry (miscellaneous)
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Filament-Induced Failure in Lithium-Reservoir-Free Solid-State Batteries'. Together they form a unique fingerprint.

Cite this