Abstract
The interplay between non-Hermiticity and disorder gives rise to unique universality classes of Anderson transitions. Here, we develop a field-theoretical description of non-Hermitian disordered systems based on fermionic replica nonlinear sigma models. We classify the target manifolds of the nonlinear sigma models across all the 38-fold symmetry classes of non-Hermitian systems and corroborate the correspondence of the universality classes of Anderson transitions between non-Hermitian systems and Hermitized systems with additional chiral symmetry. We apply the nonlinear sigma model framework to study the spectral properties of non-Hermitian random matrices with particle-hole symmetry. Furthermore, we demonstrate that the Anderson transition unique to nonreciprocal disordered systems in one dimension, including the Hatano-Nelson model, originates from the competition between the kinetic and topological terms in a one-dimensional nonlinear sigma model. We also discuss the critical phenomena of non-Hermitian disordered systems with symmetry and topology in higher dimensions.
Original language | English (US) |
---|---|
Article number | 054203 |
Journal | Physical Review B |
Volume | 111 |
Issue number | 5 |
DOIs | |
State | Published - Feb 1 2025 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics